

Carbon Footprint and Path to Zero Carbon Prepared for Sava Demo December 2024

Abstract:

This report gives an overview of the current stock by means of a variety of data profiles like property age and primary heating fuel. The second section introduces plans to reach Band C by 2030 and subsequent measures to approach zero-carbon, weighing impact and cost effectiveness of improvements.

Contents

Abstract:	2
1. The Brief	5
2.1 DQI Profile	9
2.2 Age Profile	
2.3 Property Type Profile	
2.4 Heating Fuel Profile	
2.5 SAP Rating Profile	
2.6 SAP Band D Profile	
2.7 Baseline Carbon Footprint	
3. Improvement Planning	
3.1 Band C Plan	
3.2 Path to Zero Carbon Plan	
4. Final Comments	
Glossary:	

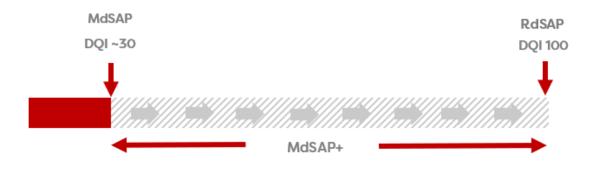
Sample Carbon Footprint and Path to Zero December 2024

1. The Brief

Specific cases of current stock

Bespoke conditions

Custom charts requested

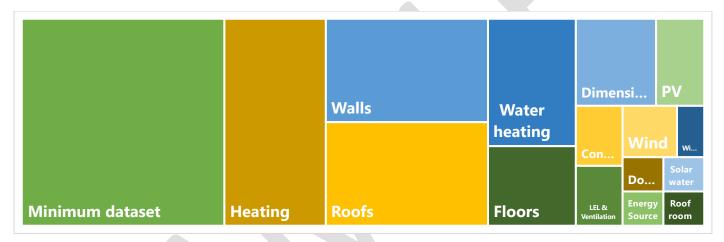

2. Current position

The charts and tables in this section show the stock characteristics and profile on 28th October 2024. The data used to create these charts and calculate results was uploaded into Sava Intelligent Energy by Sava Analytics.

The stock in Sava Intelligent Energy consists of 11,085 properties with an average Data Quality indicator of 68.7 and average SAP of 68.

There are 10,856 properties with a SAP rating result. 228 of the non-calculating properties have no detachment data and the remaining 1 has conflicting energy data.

The Data Quality Indicator (DQI) is a measure of the amount of data present for a property. A property with just the minimum dataset (MdSAP) required to produce a SAP rating would have a DQI around 30-35, an RdSAP EPC dataset would have a DQI of 100. Some data items have more impact on the SAP rating which is taken into account when the DQI is calculated.



2.1 DQI Profile

The table below shows the DQI by property type for the Sava Demo stock. Properties with a DQI of 100 contain enough energy data to produce an EPC and it is likely these properties have a valid EPC. There are 222 (2% of processing properties) with a DQI of 100.

	< 40	45-49	50-54	55-59	60-64	65-69	70-74	75-79	80-84	85-89	100	Total
Bungalow				6	130	54	880	560	16		24	1,670
Flat			53	42	79	522	562	746	5		23	2,032
House		63	71	1,715	391	2,245	250	2,145	22	1	175	7,078
Maisonette				4	1	53	10	8				76
ND	228					1						229
Total	228	63	124	1,767	601	2,875	1,702	3,459	43	1	222	11,085

49% of the processing properties have a DQI under 70, this decreases the confidence in the outputs and recommendations in the Intelligent Energy plans.

As shown above, the property characteristics with the most impact on the DQI are heating, walls, roofs, and water heating. Within the processing properties for Sava Demo's stock, the most frequently missing high-impact data item is water heating with 7,260. Recording more of these details would increase the confidence of the calculated SAP rating, and in some cases, increase the number of SAP points.

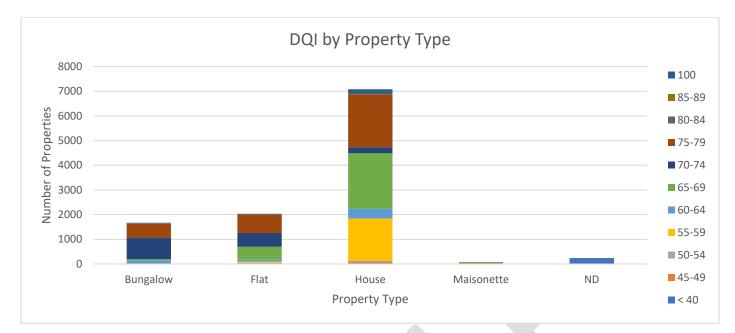


Figure 1 - DQI by Property Type

2.2 Age Profile

Over 60% of Sava Demo's properties, where the age band has been entered, are between 1930 and 1975. Just 7% are pre-1930, which are the most likely to have solid walls requiring internal or external insulation.

Due to updated policies, the 12% of properties built after 2002 will be totally double glazed, ensuring adequate thermal, safety and ventilation standards.

Other characteristics are also assumed from the age of the property, from number of extract fans to the thermal transmissions of roofs and floors when insulation thickness is not known.

	A (Pre 1900)	B (1900- 1929)	C (1930- 1949)	D (1950- 1966)	E (1967- 1975)	F (1976- 1982)	G (1983- 1990)	H (1991- 1995)	l (1996- 2002)	J (2003- 2006)	K (2007- 2011)	L (2012 +)	Total
Bungalow	5	7	213	590	339	135	79	38	89	59	49	67	1,670
Flat	20	74	17	318	496	330	237	140	74	37	62	227	2,032
House	15	636	947	2,757	889	418	163	256	203	122	232	440	7,078
Maisonette		1	1	29	16	1	2	4	4			18	76
ND		2	66	147	9	3	2						229
Total	40	720	1,244	3,841	1,749	887	483	438	370	218	343	752	11,085

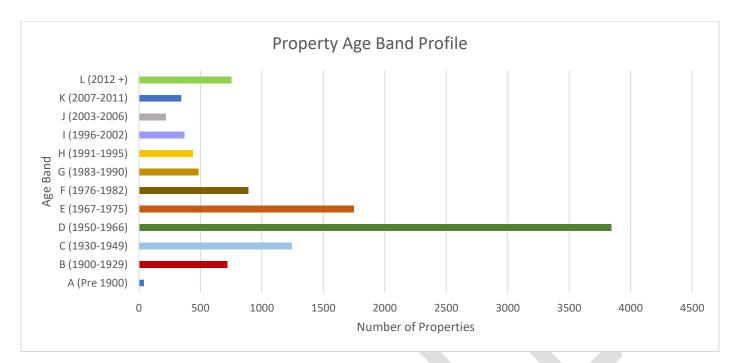


Figure 2 - Age band profile of the [Customer Name] stock

2.3 Property Type Profile

The property profile of Sava Demo broadly reflects the sector with a range across property types – with almost half houses and half flats/maisonettes. Property types can have an impact on programmes to reduce carbon emissions; for example, flats can be more difficult to reduce carbon emissions while bungalows are more expensive due to their large space heating demand per area.

Property Type	Total
Bungalow	1,670
Flat/Maisonette	2,108
Detached house	1,224
End-Terrace house	972
Mid-terrace house	1,512
Semi-detached house	3,371
Not Defined	228
Total	11,085

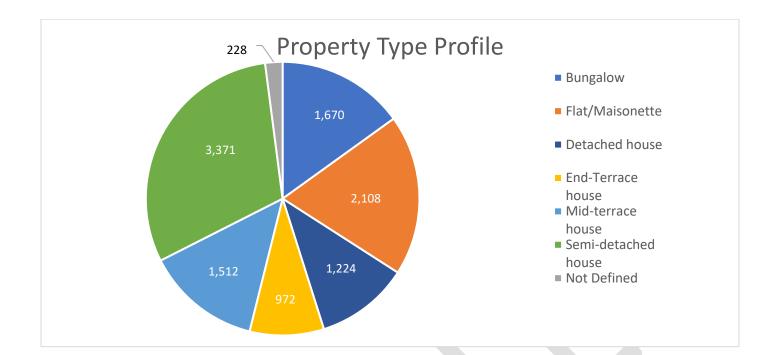


Figure 3 - Property type profile of the [Customer Name] stock

2.4 Heating Fuel Profile

The majority of the Sava Demo stock is heated by mains gas and of the 10,222 heated by mains gas, only five do not have the main heating system as 'Boiler'. Four of these are a warm air system while one is a gas-fired room heater.

Nearly all, 93%, of the electrically heated properties have either a wet heat pump system or storage heaters. The remaining 41 properties are split over electric boilers, warm air systems, electric underfloor heating, air-based heat pumps, or electric room heaters. Over 90% of the properties using electric storage heaters and electric room heaters are EPC Band D or below. All 10 of the EPC Band G properties use electricity as their primary space heating fuel.

The community heating schemes within the Sava Demo stock are displaying a higher average SAP score. However, this is not due to the community heating; these properties are majority new-build flats with filled cavity wall insulation and 100% multi-glazing, so are high energy efficiency unrelated to the space heating.

Fuel	Count	Average SAP
Community (mains gas)	191	73
Community (non-gas)	21	78
Electricity	588	59
Mains gas	10,222	68
Solid fuel	11	58
LPG	7	52
Oil	44	60
Not defined*	1	36
Whole stock	11,085	68

*This one property has been recorded as "No Heating System Present". In RdSAP, this will infer electric room heaters. Observing neighbouring properties, all have boilers fuelled by mains gas, this may merit some investigation to increase accuracy.

2.5 SAP Rating Profile

The average SAP rating in these tables uses the SAP rating calculated using the latest RdSAP calculation engine (RdSAP 9.94) from the data that has been uploaded to Intelligent Energy.

Over 54% of the calculating stock is currently Band C or above, and 39% are in Band D.

	NC	A (92 plus)	B (81-91)	C (69-80)	D (55-68)	E (39-54)	F (21-38)	G (1-20)	Average
Bungalow		1	16	929	663	58	3		68
Flat		1	127	1,705	193	6			74
House	229		41	3,031	3,325	595	76	10	66
Maisonette			4	59	11	2			73
Total	229	2	188	5,724	4,192	661	79	10	

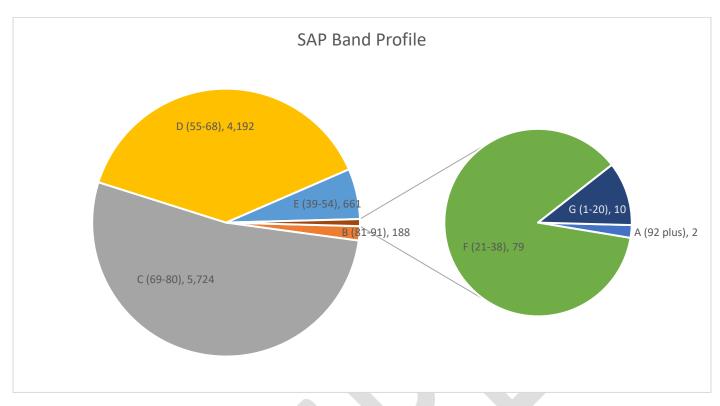


Figure 4 - SAP Band profile of the [Customer Name] stock

2.6 SAP Band D Profile

There are XXX (21%) properties currently in SAP Band D. Nearly half of the properties in Band D are within 2 SAP points of an EPC band C. Some of these properties may move to a Band C with additional data as there are 25 properties with a DQI below 65.

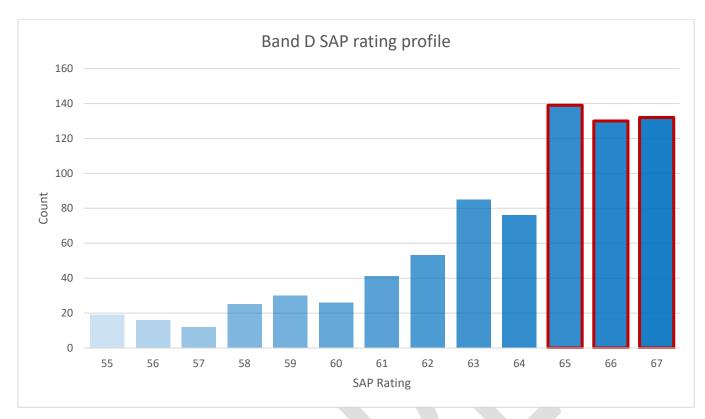
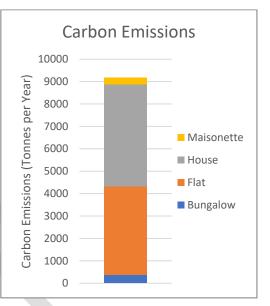


Figure 5 - SAP Band D SAP ratings

2.7 Baseline Carbon Footprint

The carbon emissions in these tables are the resultant CO_2 emissions using the latest RdSAP calculation engine (RdSAP 9.94) from the data that has been uploaded to Intelligent Energy.

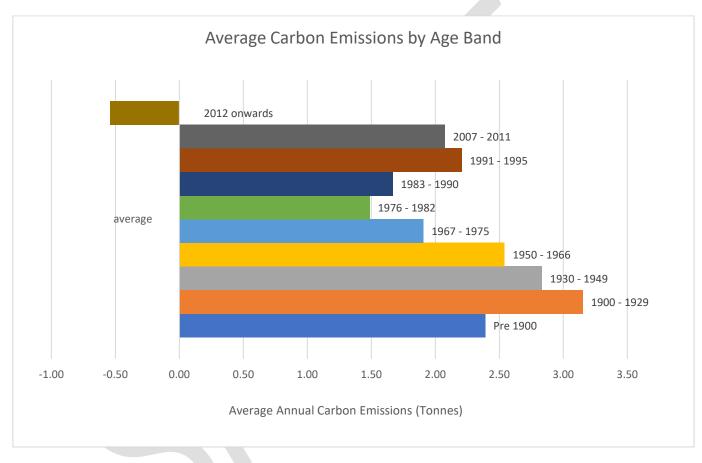
The total regulated carbon emissions for the processing properties in the [Customer Name] stock is **X,XXX tonnes per year** with an average carbon emissions per property of **X.X tonnes per year**. The UK average carbon emissions¹



¹https://www.ons.gov.uk/peoplepopulationandcommunity/housing/articles/energyefficiencyofhousinginenglandandwales/2020-09-23

for houses in 2019 is 4 tonnes per year and for flats 2.3 tonnes per year. [Customer Name] average carbon emission across the stock is considerably better than the UK averages.

	Property Count	Total Carbon Emissions (t/yr)	Average Carbon Emissions (t/yr)
Bungalow	246	357	1.5
Flat	2091		
House	1667	4538	2.7
Maisonette	118	306	2.6
Whole Stock			



The carbon emissions age profile of the stock illustrates that the older properties are those currently producing the most carbon. This is not unexpected as older properties will have been built to lower building regulations standard.

	Property Count	Total Carbon Emissions (t/yr)	Average Carbon Emissions (t/yr)
Pre 1900	6	14	2.4
1900 - 1929			3.2
1930 - 1949	407	1153	2.8
1950 - 1966	1468		
1967 - 1975	826	1576	1.9
1976 - 1982	526	783	1.5
1983 - 1990			1.7

1991 - 1995	45	99	2.2
2007 - 2011	8	17	2.1
2012 onwards*	56	-30	-0.5
Whole Stock			

*the majority of these properties are flats that have 3kWp of PV.

The type of heating system and fuel has a big impact on the carbon emissions of a dwelling. The table below illustrates this with the average carbon emissions for properties where there is no central heating, and only room heaters are present, is more than double that of properties with a mains gas boiler.

	Property Count	Total Carbon Emissions (t/y)	Average Carbon Emissions (t/yr)
Boiler	3148		
Community heating		573	1.2
Heat pump (wet)	15	27	1.8

Room heaters	17	87	
Storage heating	467		3.2
Warm air	2	6	2.9
No heating system	1	3	3.1
Whole Stock			

3. Improvement Planning

This section presents data from the Intelligent Energy planning functionality. Improvement plans in Intelligent Energy allow the setting of a target either SAP or Carbon. The available measures are then used to calculate the most cost-effective way to reach the target.

Unlike the EPC recommendations there are no criteria backstops for when an improvement would be included. For example, if a property already has 50mm of external wall insulation, the EPC will not output a recommendation for additional EWI, while Intelligent Energy Improvement Plans will assess the impact and cost effectiveness of adding more EWI.

The criteria and specification for the improvements have been included at the end of this document.

The cost effectiveness uses the target metric, i.e., for SAP target this would be \pm /SAP point and for carbon target \pm /kg.

The charts and tables in this section were created using [Customer Name] dataset in IE on [Date].

Two plans were calculated using the [Customer Name] processing data of XXXX properties.

- Band C Plan (XX properties)
 - Properties: EPC band D, E, F & G
 - *Measures*: All available measures
 - *Target*: EPC band C
- Zero Carbon Plan (XX properties)
 - Properties: Whole stock (processing only)
 - Measures: All available measures
 - Target: 100% carbon emissions reduction

The plans described follow two principles; "**fabric first**" and "**lowest regrets**". A 'fabric first' approach involves maximising the performance of the components and materials that make up the building fabric itself, before considering the improvement of heating or renewables to the building. A fabric first method can reduce the overall costs of the improvements while also reducing the need for maintenance during the building's life.

The Band C Plan is in fact a subset of the zero-carbon plan, this has been done to follow the "lowest regrets" principle. More significant improvements may be recommended than necessary to make Band C in some cases to protect against causing future improvements to be necessary to reach zero carbon targets. For example, 270mm of loft insulation may be needed to reach Band C, and 400mm to reach zero carbon in the future. To avoid repeat visits and unnecessary costs, the Band C plan will recommend the 400mm loft insulation improvement.

Some properties will not be able to reach Band C within feasible costs due to custom reasons.

The capital costs shown in the "Improvement Costs" sections within the following plans use the costs available in Intelligent Energy. These originate from research into published costs from BEIS, EST and other commercial sources. More specific descriptions of the calculations and sources are described in the Improvement Guide Appendix at the end of this document.

3.1 Band C Plan

This plan sets the target at EPC Band C (SAP rating 69+) and all properties were able to reach Band C.

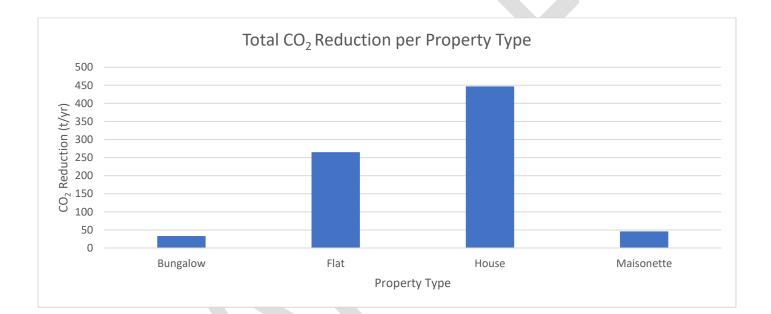
The final SAP rating of these properties ranges from 69-98.

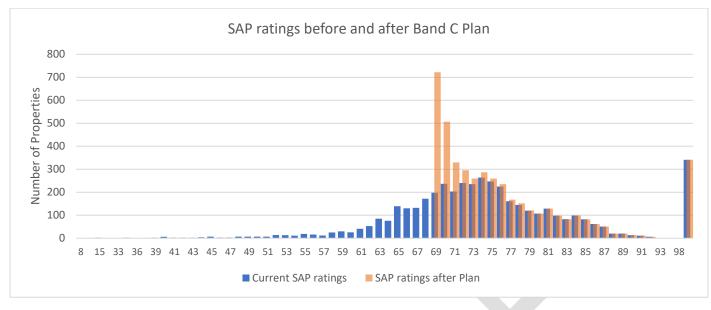
The plan results in XXX tonnes reduction in the CO₂ emissions of the [Customer Name] stock.

The current [Customer Name] average SAP rating, across the 4122 calculating properties is 73, the average SAP rating across these properties if all the improvements are applied would be 75.

The headline cost for this plan is £1.1 million.

M	lore	Info
	ore	

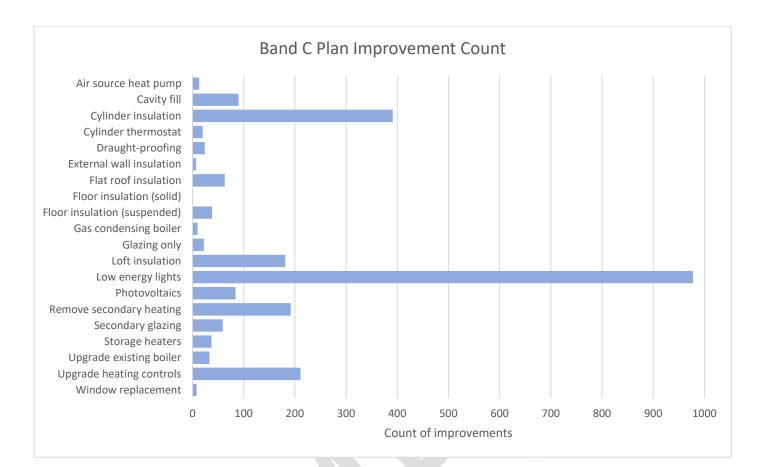



CO2 (tonnes per year) before and after Band C Plan:

Property Type	Initial CO ₂ (t/yr)	Final CO₂ (t/yr)	CO ₂ reduction (t/yr)	Average CO ₂ reduction (t/yr)
Bungalow	190	156	33	0.46
Flat		868	265	0.74
House	2,132	1,685	447	0.77
Maisonette	169	123	46	0.90
Total	3,624			

Total Carbon Emissions After Band C Plan

385 tonnes per year

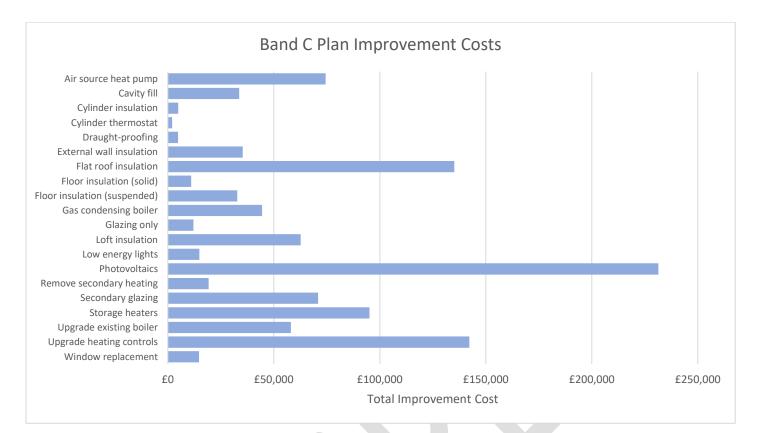


Band C Plan - Improvement Count:

Measures			Count			
Improvement	Bungalow	Flat	House	Maisonette	Total	CO ₂ reduction (t/yr)
Air source heat pump		11			13	35.7
Cavity fill	7	36		2	90	40.9
Cylinder insulation	22	138		23	391	61.4
Cylinder thermostat		3			20	4.8
Draught-proofing	1	3		2	24	2.8
External wall insulation		6		1	7	2.7
Flat roof insulation	2	47		13	63	117.8
Floor insulation (solid ground floor)		1			1	0.2
Floor insulation (suspended floor)	9	8	21		38	
Gas condensing boiler		5	4	1	10	
Glazing only improvement		21		1	22	
Loft insulation		23	140	2	181	
Low energy lights		314	546	51	978	
Photovoltaics ^a			77		84	
Remove secondary heating		37	132	7	192	
Secondary glazing		43	9	5	59	
Storage heaters ^b		28	4	4	37	
Upgrade existing boiler		6	20	4	33	
Upgrade heating controls (wet system)		38	140	18	211	
Window replacement		8			8	2.5
Total						

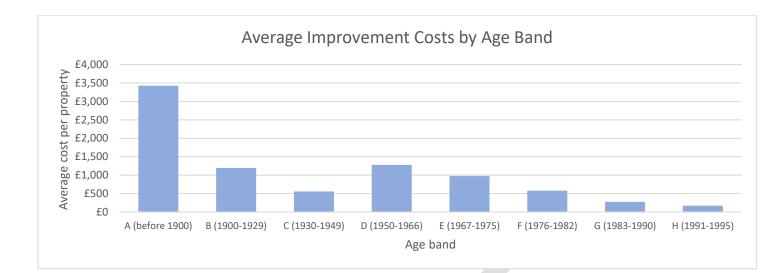
a. PV Measure is not currently applied to flats or maisonettes

b. Band C is a SAP (cost based target) the storage heater measure improves the SAP but often results in an increase in CO₂ emissions

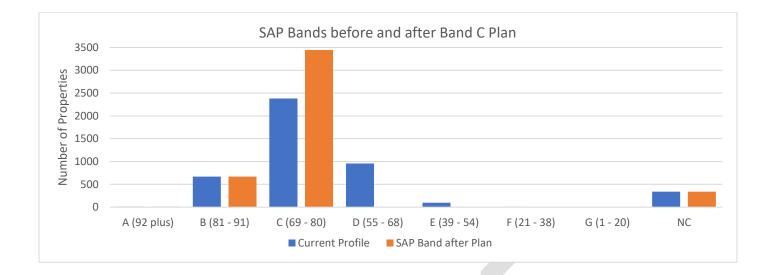

Band C Plan - Improvement Costs:

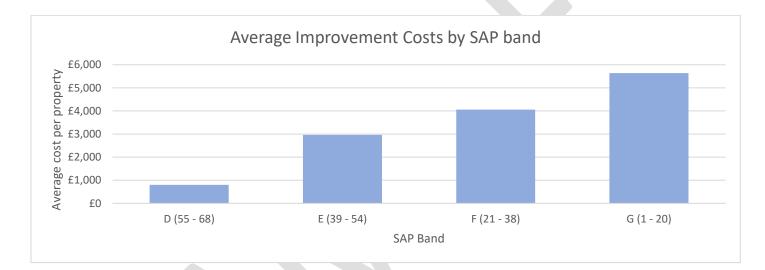
Measures				Average		
Improvement	Bungalow	Flat	House	Maisonette	Total cost	measure cost
Air source heat pump		£62,072	£12,327		£74,399	£5,723
Cavity fill	£2,540	£11,867	£18,186	£1,034	£33,627	£374
Cylinder insulation	£267		£2,535	£286	£4,889	£13
Cylinder thermostat			£1,700		£2,000	£100
Draught-proofing	£200		£3,600	£400	£4,800	£200
External wall insulation				£6,233	£35,285	
Flat roof insulation	£214		£70	£20,839	£135,109	
Floor insulation (solid floor)					£11,034	
Floor insulation (suspended)	£8,750		£17,173			
Gas condensing boiler			£19,548	£5,189		
Glazing only improvement				£1,012		
Loft insulation	£4,888		£50,661	£502		
Low energy lights	£870		£9,198	£854		
Photovoltaics ^a	£18,650		£212,770			
Remove secondary heating	£1,600	£3,700	£13,200	£700		
Secondary glazing	£1,769	£45,639	£15,019	£8,487	£70,914	
Storage heaters	£1,712	£63,812	£15,920	£13,652	£95,096	£2,570
Upgrade existing boiler	£5,026	£9,844	£36,342	£6,803	£58,015	£1,758
Upgrade heating controls	£11,559	£23,305	£93,729	£13,607	£142,200	£674
Window replacement		£14,669			£14,669	£1,834
Total				£79,597		

PV Measure is not currently applied to flats or maisonettes а.


b. UPRN Z this is the only available measure to get this property to Band C. Suggest reviewing the data for surrounding properties as some flats have cavity for the wall construction and others system build (some with and some without external wall insulation). If this property has got external wall insulation, then the solid floor insulation improvement would not be required.

Band C Plan - Analysis by Age band:


Improvement	Number of properties	Number of improvements	Total Cost	Average Cost per property
A (before 1900)	3	10	£10,284	£3,428
В (1900-1929)	204	533		£1,194
C (1930-1949)	152	335		£555
D (1950-1966)	417	989		
E (1967-1975)		435		
F (1976-1982)		57	£17,322	
G (1983-1990)		73	£10,421	£274
Н (1991-1995)		30	£2,730	£171
Total	1063			



Analytic comments here

Band C Plan - Analysis by SAP Band:

Improvement	Number of properties			Average Cost per property
D (55 - 68)	956	2081	£765,355	£801
E (39 - 54)	97	343		£2,961
F (21 - 38)	6	22		£4,056
G (1 - 20)	4	16	£22,541	£5,635
Total		2462		

Analytic comments here

3.2 Path to Zero Carbon Plan

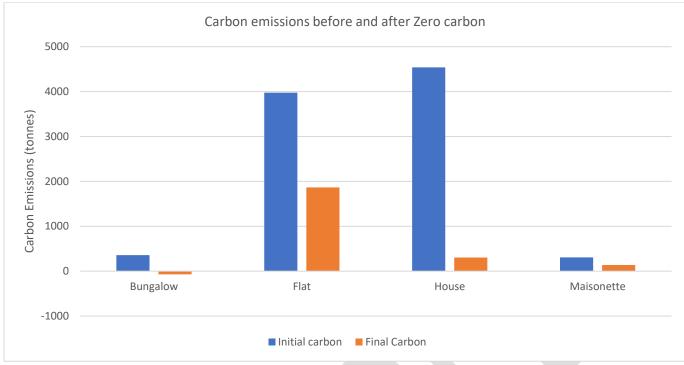
The zero-carbon plan sets the carbon target for the stock at 0% of current emissions.

Using all of the measures currently available in Intelligent Energy, the plan was able to reduce the CO₂ emissions of the [Customer Name] processing stock by 76% to 2,232 tonnes per year. This illustrates the challenge in creating a zero-carbon strategy using conventional measures.

The headline cost for this plan is £61.3 million.

Budgeting to Achieve Zero Carbon:

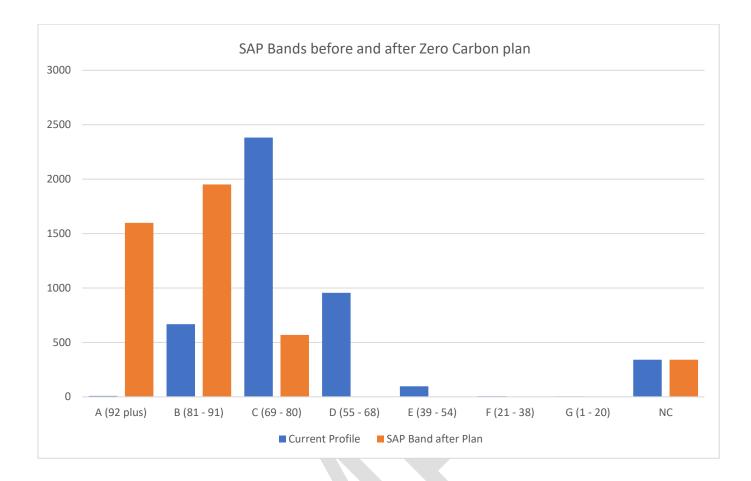
As has been stated above it is highly challenging to create a zero-carbon strategy using conventional measures; the plan, outlined above, has a shortfall of 2,232 tonnes per year. In the longer term it may be possible to deal with this shortfall by additional measures and/or by offsetting; this is known as "net zero carbon".

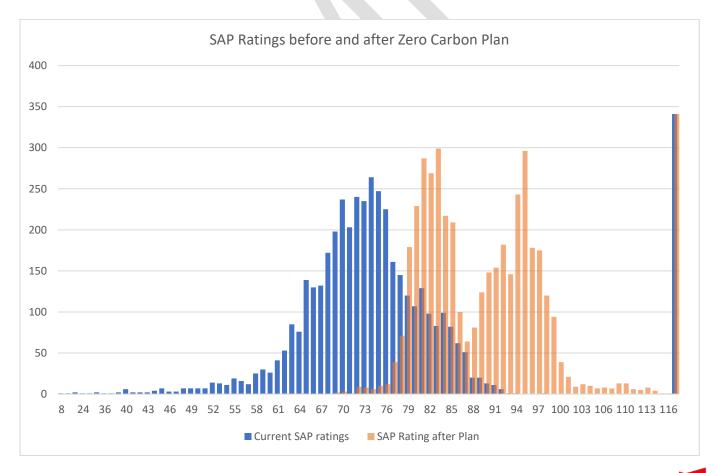

To provide an indicative cost for achieving this we have calculated the average cost of reducing carbon emissions per tonne per year: £8,834. On this basis, the additional cost of reducing the carbon emissions to zero would be £19,717,733. Adding this to the cost of measures identified above the overall cost of achieving zero carbon would be £81.1 million.

Property Type	Initial CO2 (t/yr)	Final C (t/yr)	202	CO₂ reduction (t/yr)	Average CO ₂ reduction (t/yr)
Bungalow	357		-72	429	1.7
Flat			1,864		1.0
House					
Maisonette	306		135	171	
Total	9,176		2,232		1.7

Total Annual Carbon Emissions After Zero-Carbon Plan

🔿 tonnes per

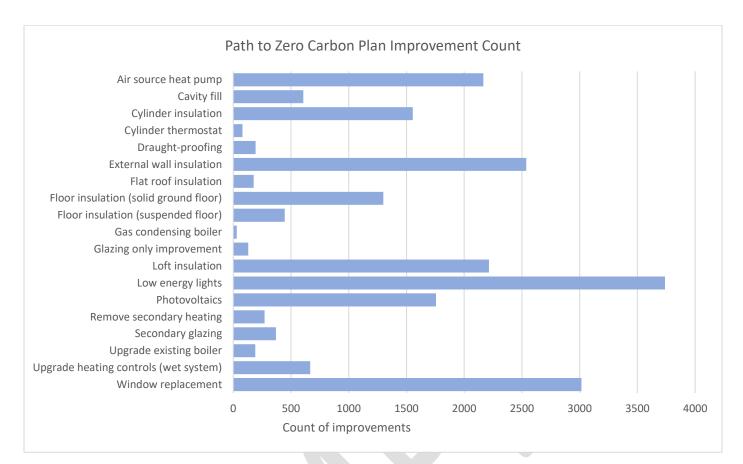



CO₂ (tonnes) before and after Zero Carbon Plan

Offsetting:

However, extrapolating in this fashion may not be an appropriate method when taking into account the adaptation of future technology, and because the cost per tonne of CO₂ per year saved is unlikely to be linear as zero carbon is approached. Therefore, one might consider carbon offsetting via a few possible methods:

- the use of surplus renewable energy that is generated on associated buildings
- paying into local funds that are set up specifically to finance carbon reduction schemes (<u>note</u> this is only a valid method of offsetting if the funded project would not have taken place without the donated money)
- purchasing commercial offsets (otherwise known as 'carbon credits') which guarantee to provide carbon reductions. Carbon credits are not currently regulated by the Financial Conduct Authority (FCA), so it is advisable to check that they are certified by a scheme such as the UN's clean development mechanism (CDM)
- the use of a zero carbon mains electricity tariff, e.g. one that is entirely generated using renewable sources. This is considered a legitimate form of offsetting provided the zero-carbon electricity is (a) additional – ie. more electricity is generated for each home that contracts to use the tariff– and (b) guaranteed to stay connected to the home – i.e. the householder is somehow prevented from switching to a non-zero-carbon tariff on demand
- **carbon sequestration** schemes that remove carbon from the atmosphere, either industrial or natural (e.g. tree planting).


Path to Zero Carbon Plan - Improvement Count:

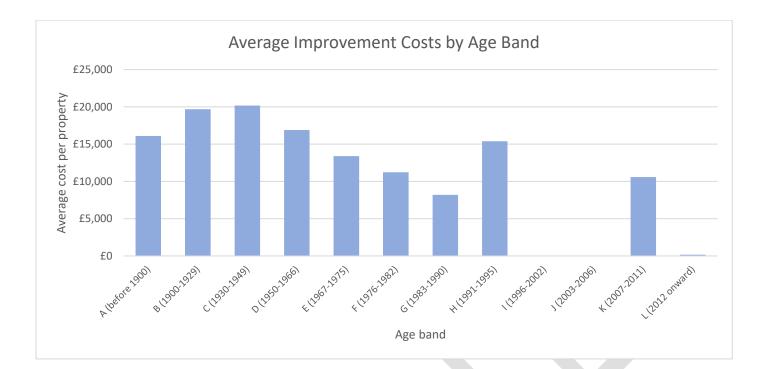
The following table provides a count of the measures in the zero-carbon plan.

In order to provide some context to the figures in this table, this should be viewed in conjunction with the Improvement Guide Appendix at the end of this document.

			Count			CO ₂ reduction
Improvement	Bungalow	Flat	House	Maisonette	Total	(t/yr)*
Air source heat pump	67	1,012		64	2,166	1,387
Cavity fill	26			4	607	126
Cylinder insulation	64			29	1,555	171
Cylinder thermostat	5				79	17
Draught-proofing	11			3	193	16
External wall insulation		1,196	1,142	109	2,537	778
Flat roof insulation		86	41	40	176	160
Floor insulation (solid ground floor)		600	599	50	1,299	
Floor insulation (suspended floor)		87	325	6	446	
Gas condensing boiler			28		30	
Glazing only improvement		78	34	1	130	
Loft insulation		707	1353	22	2,215	
Low energy lights		1,825	1,589	106	3,739	345
Photovoltaics	182		1,573		1,755	2,300
Remove secondary heating	25	98	141	7		62
Secondary glazing	37	23		1		58
Upgrade existing boiler	7	96		10		57
Upgrade heating controls (wet system)	67	211		23		98
Window replacement	80	1,856		109	3,015	565
Total	1,119	8,867				6,944

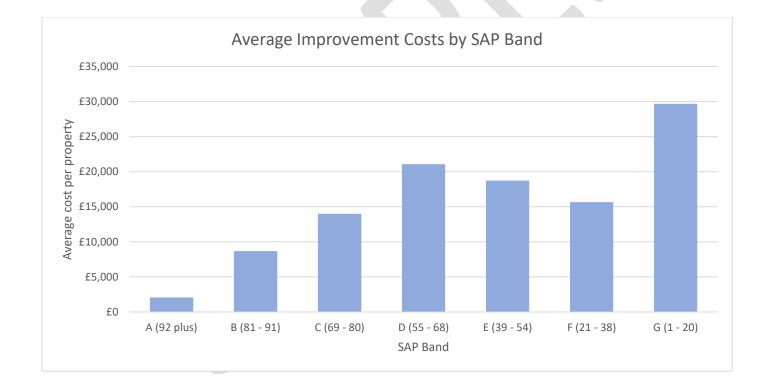
*note due to rounding the rows may not add up to the total cost

Path to Zero Carbon Plan - Improvement Costs:


The derivation of the costs in the plan are summarised in the Improvement Guide Appendix at the end of this document. These are likely to differ from the costs used by [Customer Name] for planned works.

		Cos	sts			Average
Improvement	Bungalow	Flat	House	Maisonette	Total cost [*]	measure cost per property
Air source heat pump		£5,177,848	£5,956,314		£11,844,229	£5,468
Cavity fill		£124,636			£206,680	£340
Cylinder insulation		£6,318				£12
Cylinder thermostat		£1,200				£100
Draught-proofing		£14,311	£16,600			£174
External wall insulation		£6,700,307	£8,623,974			£6,531
Flat roof insulation		£213,593	£9,909	£45,926		£1,543
Floor insulation (solid)	£398,125	£6,027,401	£5,200,094	£370,905		£9,235
Floor insulation (suspended)	£27,118		£248,487	£3,260		£798
Gas condensing boiler	£9,012		£131,598			
Glazing only improvement	£9,784		£34,829	£769	£96,313	
Loft insulation	£37,631		£424,538	£7,627	£727,668	
Low energy lights	£2,468		£24,640	£1,604	£48,848	
Photovoltaics	£1,018,300		£7,462,895		£8,481,195	
Remove secondary heating	£2,500	£9,800	£14,100	£700	£27,100	
Secondary glazing	£42,748	£25,356		£1,865	£651,081	
Upgrade existing boiler	£10,528	£133,810		£16,394	£303,575	£1,589

Path to Zero Carbon Plan - Analysis by Age Band:


Improvement	provement Number of properties		Total Cost	Average Cost per property
A (before 1900)	6	36	£96,600	£16,100
B (1900-1929)	357	2462		
C (1930-1949)	407	2497		
D (1950-1966)		8266		
E (1967-1975)		3819		£13,390
F (1976-1982)	526		£5,903,069	£11,223
G (1983-1990)	423		£3,462,819	£8,186
Н (1991-1995)	45	284		
К (2007-2011)	8	36	£84,550	£10,569
L (2012 onward)	56	14	£9,491	£169
Total	4122	21440		

Analytic comments here

Path to Zero Carbon Plan - Analysis by SAP Band:

Improvement	Number of properties	Number of improvements	Total Cost	Average Cost per property
A (92 plus)	9	18	£18,577	£2,064
B (81 - 91)	668	2542	£5,806,864	
C (69 - 80)		12041		
D (55 - 68)	956	6177		
E (39 - 54)	97	597		£18,719
F (21 - 38)	6	35	£94,006	£15,668
G (1 - 20)	4	30	£118,739	£29,685
Total	4122	21440		

Analytic comments here

4. Final Comments

Shortened brief

Shortened summary of stock

Plan C overview

Zero carbon overview

Short term steps

Long term situation

Appendix: Improvement guide

Improvement plans within Intelligent Energy contain many different improvements; this guide provides the user with information on the specification for each of the improvements.

Each measure specifies:

- Criteria: This explains when the improvement is evaluated
- Specification: Details of the improvement applied to create the improvement
- Variants: For some improvements there is more than one improvement option. All variants will be evaluated, and the most cost-effective variant included in the plan.
- Identifier: Each improvement, and variant if applicable, has a short code to identify the improvement applied. These codes can be seen in the csv download of the Improvement Plan.
- Packages: The improvement package the measure/variant is include in.
- Costs: An explanation on the basis for the capital costs used

Loft insulation	(Code: A)
-----------------	-----------

Criteria	Specification	Variants	Identifier	Packages	Capital costs
The presence of any pitched	Mineral wool insulation to	270mm	LI-270	ALL/ECO/EPC	The roof area where the insulation is applied as well as the
roof including thatched	all available loft space.	400mm	LI-400	ALL/ECO	thickness of mineral wool required to reach the variant level is
roofs, no access pitched	U-values for variants taken	U-value = 0.09	LI-U0.09	ALL/ECO	used to calculate bespoke capital costs for each dwelling.
roofs and roofs with	from table S9 Appendix S	W/m ² K			
unknown levels of loft	SAP 2012				The cost per m ² of the mineral wool insulation is averaged from a
insulation.					variety of commercial sources with a bulk discount applied and
					the overall cost includes a fixed installation cost.
					Where insulation already exists in the loft space, the capital costs
					take this into account and will only calculate the cost of the 'top-
					up' required.

Cavity fill (Code: B)

Criteria	Specification	Variants	Identifier	Packages	Costs
The presence of any cavity wall that is not recorded as filled, including cavity walls recorded as 'unknown' insulation,	Blown fibre insulation to all suitable walls. Resultant U-value used in the calculation is taken from table S6 Appendix S SAP 2012	None	CWI-STD	ALL/ECO/EPC	 The wall area to be treated is used to calculate the capital costs. There are additional costs included for scaffolding for top floor flats, 3 storey dwellings and dwellings with a conservatory. The cost per m² and fixed install costs are derived from figures published by EST. The costs assume the cavity is a standard cavity and not classed as 'hard-to-treat'.

Flat roof insulation (Code: A2)

Criteria	Specification	Variants	Identifier	Packages	Costs
The presence of any flat roof that has a U-value greater than 0.18 W/m2K, either entered or inferred. Including flat roofs recorded as 'unknown' insulation.	A U-value of 0.18 W/m2K is applied to all applicable flat roofs	None	FRI-U0.18	ALL/ECO/EPC	The flat roof area to be treated is used to calculate the capital costs. There are additional costs included for scaffolding for top floor flats, 3 storey dwellings and dwellings with a conservatory. The cost per m ² and fixed install costs are derived from figures published by BEIS.

Extornal	wall	inculation	(Code: Q)
LALEITIUI	wan	Insulation	(COUE, Q)

Criteria	Specification	Variants	Identifier	Packages	Costs		
All walls, except park home walls. This includes cavity walls, although it is likely cavity wall insulation will be a more cost-effective measure.	EPS boards with a thermal conductivity of 0.038 W/mK to all suitable walls.	50mm 100mm 150mm 200mm	EWI-50 EWI-100 EWI-150 EWI-200	ALL/ECO ALL/ECO/EPC ALL/ECO ALL/ECO	The wall area to be treated is used to calculate the capital costs. There are additional costs included for scaffolding for top floor flats, 3 storey dwellings and dwelling with a conservatory. The cost per m ² and fixed install cost are derived from figures published by BEIS, assuming a minimum U-value of 0.3 W/m2K must be installed to satisfy building regulations.		
Solid floor insulation (Code: W2)							

Solid floor insulation (Code: W2)

Criteria	Specification	Variants	Identifier	Packages	Costs
All solid heat loss floors, either exposed or ground floor.	EPS boards with a thermal conductivity of 0.038 W/mK to all suitable floors.	50mm 100mm 150mm	FISO-50 FISO-100 FISO-150	ALL/ECO ALL/ECO/EPC ALL/ECO	The floor area to be treated is used to calculate the capital costs. The cost of removing the concrete floor and replacing the concrete is included. The cost does not include any replacement of floor coverings.
					The cost per m ² and fixed install cost are derived from figures published by BEIS and a variety of commercial sources.

Suspended floor insulation (Code: W1)

Criteria	Specification	Variants	Identifier	Packages	Costs
All suspended heat loss	Application of rockwool to	50mm	FIST-50	ALL/ECO	The floor area to be treated is used to calculate the capital costs.
floors, either exposed or	the underside of the floor.	100mm	FIST-100	ALL/ECO/EPC	The cost of removing include removing and replacing the
ground floor. This includes		150mm	FIST-150	ALL/ECO	floorboards. The cost does not include any replacement of carpets
brick and block suspended					etc.
floors					The cost per m ² and fixed install cost are derived from figures published by BEIS and a variety of commercial sources.

Window replacement (Code: O)

Criteria	Specification	Variants	Identifier	Packages	Costs
Any windows* single,	Replace window; glazing	Double glazing	WRD-1.3	ALL/ECO/EPC	The costs are based on the number of windows which is inferred
double or triple glazed with	and frame.	Triple glazing	WRT-1.0	ALL	from the habitable room count.
a U-value < 1.0 W/m2K.					
	Double glazing:				The cost per window and fixed install cost are derived from a
*Does not apply to RdSAP	U=1.3 W/m2K, g=0.71				variety of commercial sources.
datasets where all the	Triple glazing:				
windows have been	U=1.0 W/m2K g=0.66				
measured and entered					
individually					

Glazing only replacement (Code: O3)

Criteria	Specification	Variants	Identifier	Packages	Costs
All double glazed*	Replace the glazing within	6mm	DGR-2.0	ALL	The costs are based on the number of windows, which is inferred
windows.**	the existing frame.	12mm	DGR-1.6	ALL/EPC	from the habitable room count, and the glazing gap of the
		16mm	DGR-1.3	ALL	window.
*Does not apply to RdSAP	6mm or unknown glazing				
datasets where all the	gap:				The cost per glazing pane and fixed install cost are derived from a
windows have been	U=2.0 W/m2K, g=0.76				variety of commercial sources.
measured and entered	12mm glazing gap:				
individually.	U=1.6 W/m2K, g=0.74				
** For the EPC package the	16mm glazing gap:				
window must have uPVC	U=1.3 W/m2K, g=0.71				
frame and 12mm gap.					

Secondary glazing (Code: P)

Criteria	Specification	Variants	Identifier	Packages	Costs
All windows* single, double	Install secondary glazing to	Removeable	SG-STD	ALL/EPC	The costs are based on the number of windows which is inferred
or triple glazed.	all windows.	Fixed	SG-FIX	ALL	from the habitable room count.
*Does not apply to RdSAP datasets where all the windows have been measured and entered individually.	Removeable: U=2.0 W/m2K, g=0.76 Fixed: U=1.5 W/m2K, g=0.76				The cost per secondary glazing pane and fixed install cost are derived from a variety of commercial sources.

Cylinder insulation (Code: C)

Criteria	Specification	Variants	Identifier	Packages	Costs
The presence of a hot water cylinder with anything less than 25mm factory applied insulation or 80mm jacket. Includes cylinders where no	80mm jacket applied. Note: 25mm of factory applied insulation has the same insulation properties as an 80mm jacket.	None	CYLI-80	ALL/EPC	The cost of the jacket is dependent on the cylinder size. The cost of the jacket is averaged from a variety of commercial sources and it is assumed this is a DIY task.
access has been recorded.					

Low energy lights (Code: E)

Criteria	Specification	Variants	Identifier	Packages	Costs		
Less than 100% low energy lighting recorded.	Low energy lighting for all fixed lighting outlets.	None	LEL-100	ALL/EPC	The cost per LED bulb is averaged from a variety of commercial sources. The number of bulbs required uses the number of fixed lighting outlets with no low energy lighting.		
Cylinder thermostat (Code: F)							

Cylinder thermostat (Code: F)

Criteria	Specification	Variants	Identifier		Costs
The presence of a hot water cylinder with no cylinder thermostat. Includes cylinders where no access has been recorded.	Apply cylinder thermostat wired to the heat source.	None	CYLT	ALL/EPC	The cost for a cylinder thermostat (supply and fit) is averaged from a variety of commercial sources for a standard cylinder thermostat.

Criteria	Specification	Variants	Identifier	Packages	Costs
Any wet heating system supplying either radiators or underfloor heating.	For current controls anything less than programmer, room thermostat and TRVs, upgrade controls.	Boiler (B) or Heat pump (HP): Programmer, room stat and TRVs or Time & temperature zone control Programmer, room stat and TRVs Time & temperature zone control	BCTL-EPC HPCTL-EPC BCTL-PTTRV HPCTL-PTTRV BCTL-TT HPCTL-TT	ALL/EPC ALL ALL	The costs for this measure are dependent on the current controls, i.e. if the current controls are programmer and room thermostat, the costs will be for installing TRVs to radiators. The costs for TRVs are based on the number of radiators inferred from the number of habitable rooms. There are fixed costs for a standard digital programmer and analogue room thermostat. Time and temperature zone controls use the number of habitable rooms to estimate the capital costs. The capital costs include an install cost.

Upgrade heating controls (wet system) (Code: G)

Storage heaters (Code: L2)

Criteria	Specification	Variants	Identifier	Packages	Costs
Current heating system is	Install HHRSH in all	HHRSH and	SH-SYS	ALL/ECO/EPC	The costs are derived from EST and commercial sources.
not high heat retention storage heaters (HHRSH) or community heating	habitable rooms, with HHRSH controls. If current hot water system is not from a dual immersion, a dual immersion is installed together with a cylinder if applicable.	cylinder if required HHRSH only	SH-UNIT	ALL	The capital costs use the number of heaters and different install cost depending on whether the current heating system is storage heaters. Where the water heating is changed to dual immersion there are costs for just immersion heater change or immersion heater plus cylinder.

Replace existing boiler (Code: I)

Criteria	Specification	Variants	Identifier	Packages	Costs
Current heating system is a gas or oil boiler and not community heating. The boiler can be condensing or non-condensing.	New condensing boiler The boiler type (regular or combi) will remain the same after the upgrade.	Condensing boiler with standard controls (programmer, room stat and TRVs) (combi or regular)	RBOIL	ALL/EPC	The costs are derived from BEIS published install cost data, EST and commercial sources. There are different capital costs for regular boilers and combi boilers.
					The total capital cost is based on the number of assumed radiators which is inferred from the number of habitable rooms recorded and includes an allowance for controls if required.

Gas condensing boiler (Code: T)

Criteria	Specification	Variants	Identifier	Packages	Costs
Current heating system not a mains gas boiler or community heating.	Install full mains gas central heating system with controls and radiators. The new gas boiler will be a regular boiler with cylinder the current water heating uses a hot water cylinder, otherwise a combi boiler.	Condensing boiler with standard controls (programmer, room stat and TRVs) (combi or regular) Condensing boiler and time with temperature zone control (combi or regular)	NBOIL-CTL	ALL/ECO	The costs are derived from EST and commercial sources. The capital costs use the number of heaters and different install cost depending on whether the current heating system is storage heaters. Where the water heating is changed to dual immersion there are costs for just immersion heater change or immersion heater plus cylinder.

Air source heat pump (Code: Z1)

Criteria	Specification	Variants	Identifier	Packages	Costs
Any heating system that is	New ASHP (air to water)	S: <3 kW	ASHP-S	ALL/ECO	The capital costs for the heat pump are based on the installed
not and Air source heat	with radiators, with a new	M: 3 – 8 kW	ASHP-M		output, with a cost per kW.
pump (ASHP) or community	cylinder if there is no	L: > 8 kW	ASHP-L	ALL/ECO	
heating.	cylinder currently.				The costs are derived from various commercial sources and EST
				ALL/ECO	data.
	The output of the installed				
	heat pump is dependent the				
	design heat loss* of the				
	dwelling.				
	*				
	*design heat loss is the average				
	heat loss coefficient multiplied by a temperature difference of				
	24.2K. 21K inside and -3.2K				
	outside				

Photovoltaics (Code: U)

Criteria	Specification	Variants	Identifier	Packages	Costs
House or bungalow, no thatched roof. Includes properties with some existing PV.	Install PV and inverter	1.0 kWp 2.5 kWp 4.0 kWp	PV-1.0 PV-2.5 PV-4.0	ALL ALL/ECO/EPC ALL	The costs are derived from BEIS published data in PV install costs. The available roof area is calculated to ascertain which variants are possible.

Removing secondary heating (Code: RS)

Criteria	Specification	Variants	Identifier	Packages	Costs		
Secondary heating is present and hot water is not from secondary and main heating type is not storage heaters	Remove secondary heating.	None	R-SEC	ALL	The capital costs are derived from various commercial sources for removing a mains gas fire.		
Draught-proofing (Code: DP)							

Draught-proofing (Code: DP)

Criteria	Specification	Variants	Identifier	Packages	Costs
Current draughtproofing is less than 100%	Increase draughtproofing to 100%	None	DRA-100	ALL/EPC	The capital costs are based on the percentage of the property that requires draughtproofing and use a professional install cost.

Glossary:

Fabric First

No/Least Regrets

Carbon Sequestration